Resistor

Resistor adalah komponen elektronika yang berfungsi menghambat arus listrik

Komponen

Komponen elektro dibagi menjadi 2 yaitu komponen aktif dan komponen pasif

Rangkaian Penyearah

Rangkaian penyearah adalah rangkaian yang digunakan untuk mengubah tegangan AC menjadi tegangan DC ( searah )

Jumat, 11 Desember 2015

FUTSAL
Futsal adalah permainan bola yang dimainkan oleh dua tim, yang masing-masing beranggotakan lima orang. Tujuannya adalah memasukkan bola ke gawang lawan, dengan memanipulasi bola dengan kaki. Selain lima pemain utama, setiap regu juga diizinkan memiliki pemain cadangan. Tidak seperti permainan sepak bola dalam ruangan lainnya, lapangan futsal dibatasi garis, bukan net atau papan.




Futsal turut juga dikenali dengan berbagai nama lain. Istilah "futsal" adalah istilah internasionalnya, berasal dari kata Spanyol atauPortugisfutbol dan sala.

Sejarah Futsal

Futsal dipopulerkan di MontevideoUruguay pada tahun 1930, oleh Juan Carlos Ceriani. Keunikan futsal mendapat perhatian di seluruh Amerika Selatan, terutamanya di Brasil. Ketrampilan yang dikembangkan dalam permainan ini dapat dilihat dalam gaya terkenal dunia yang diperlihatkan pemain-pemain Brasil di luar ruangan, pada lapangan berukuran biasa. Pele, bintang terkenal Brasil, contohnya, mengembangkan bakatnya di futsal. Sementara Brasil terus menjadi pusat futsal dunia, permainan ini sekarang dimainkan di bawah perlindungan Fédération Internationale de Football Association di seluruh dunia, dari Eropa hingga Amerika Tengah dan Amerika Utara serta AfrikaAsia, dan Oseania.
Pertandingan internasional pertama diadakan pada tahun 1965, Paraguay menjuarai Piala Amerika Selatan pertama. Enam perebutan Piala Amerika Selatan berikutnya diselenggarakan hingga tahun 1979, dan semua gelaran juara disapu habis Brasil. Brasil meneruskan dominasinya dengan meraih Piala Pan Amerika pertama tahun 1980 dan memenangkannya lagi pada perebutan berikutnya tahun pd 1984.
Kejuaraan Dunia Futsal pertama diadakan atas bantuan FIFUSA (sebelum anggota-anggotanya bergabung dengan FIFA pada tahun 1989) di Sao Paulo, Brasil, tahun 1982, berakhir dengan Brasil di posisi pertama. Brasil mengulangi kemenangannya di Kejuaraan Dunia kedua tahun 1985 di Spanyol, tetapi menderita kekalahan dari Paraguay dalam Kejuaraan Dunia ketiga tahun 1988 di Australia.
Pertandingan futsal internasional pertama diadakan di AS pada Desember 1985, di Universitas Negeri Sonoma di Rohnert Park, California.

Peraturan

Luas lapangan

  1. Ukuran: panjang 25-43 m x lebar 15-25 m
  2. Garis batas: garis selebar 8 cm, yakni garis sentuh di sisi, garis gawang di ujung-ujung, dan garis melintang tengah lapangan; 3 m lingkaran tengah; tak ada tembok penghalang atau papan
  3. Daerah penalti: busur berukuran 6 m dari masing-masing tiang gawang
  4. Titik penalti: 6 m dari titik tengah garis gawang
  5. Titik penalti kedua: 10 m dari titik tengah garis gawang
  6. Zona pergantian: daerah 5 m (5 m dari garis tengah lapangan) pada sisi tribun dari pelemparan
  7. Gawang: tinggi 2 m x lebar 3 m
  8. Permukaan daerah pelemparan: halus, rata, dan tak abrasif

Bola

  1. Ukuran: 4
  2. Keliling: 62-64 cm
  3. Berat: 0,4 - 0,44 kg
  4. Lambungan: 55-65 cm pada pantulan pertama
  5. Bahan: kulit atau bahan yang cocok lainnya (yaitu bahan tak berbahaya)

Jumlah pemain

  1. Jumlah pemain maksimal untuk memulai pertandingan: 5, salah satunya penjaga gawang
  2. Jumlah pemain minimal untuk mengakhiri pertandingan: 2 (tidak termasuk cedera)
  3. Jumlah pemain cadangan maksimal: 7
  4. Jumlah wasit: 2
  5. Jumlah hakim garis: 0
  6. Batas jumlah pergantian pemain: tak terbatas
  7. Metode pergantian: "pergantian melayang" (semua pemain kecuali penjaga gawang boleh memasuki dan meninggalkan lapangan kapan saja; pergantian penjaga gawang hanya dapat dilakukan jika bola tak sedang dimainkan dan dengan persetujuan wasit)
  8. Dan wasit pun tidak boleh menginjak arena lapangan , hanya boleh di luar garis lapangan saja , terkecuali jika ada pelanggaran-pelanggaran yang harus memasuki lapangan

Lama permainan

  1. Lama normal: 2x20 menit
  2. Lama istirahat: 10 menit
  3. Lama perpanjangan waktu: 2x5 menit (bila hasil masih imbang setelah 2x20 menit waktu normal)
  4. Ada adu penalti (maksimal 5 gol) jika jumlah gol kedua tim seri saat perpanjangan waktu selesai
  5. Time-out: 1 per tim per babak; tak ada dalam waktu tambahan
  6. Waktu pergantian babak: maksimal 10 menit

Rangkaian Seri dan Paralel Induktor serta Cara Menghitungnya

Rangkaian Seri dan Paralel Induktor serta Cara Menghitungnya

Rangkaian Seri dan Paralel Induktor serta Cara Menghitungnya - Seperti halnya Komponen Pasif lainnya (Kapasitor dan Resistor), Induktor atau Coil juga dapat dirangkai secara seri dan paralel untuk mendapatkan nilai Induktansi yang diinginkan. Induktor adalah komponen pasif elektronika yang terdiri lilitan kawat dan mampu menyimpan energi pada medan magnet yang ditimbulkan oleh arus listrik yang melewatinya. Kemampuan penyimpanan energi pada medan magnet ini disebut dengan Induktansi dengan satuan unitnya Henry yang dilambangkan dengan huruf “H”.
Perlu diketahui bahwa tidak semua nilai Induktansi diproduksi secara massal oleh produsen. Oleh karena itu, untuk mendapatkan nilai induktansi yang diinginkan kita dapat merangkai dua atau lebih induktor secara seri maupun paralel.

Rangkaian Seri Induktor

Rangkaian Seri Induktor adalah sebuah rangkaian yang terdiri dari 2 atau lebih induktor yang disusun sejajar atau berbentuk seri. Rangkaian Seri Induktor ini menghasilkan nilai Induktansi yang merupakan penjumlahan dari semua Induktor yang dirangkai secara seri ini.Rangkaian Seri Induktor dan Rumusnya

Rumus Rangkaian Seri Induktor

Rumus Rangkaian Seri Induktor adalah sebagai berikut :
Ltotal = L1 + L2 + L3 + ….. + Ln
Dimana :
Ltotal = Total Nilai Induktor
L1 = Induktor ke-1
L2 = Induktor ke-2
L3 = Induktor ke-3
Ln = Induktor ke-n

Contoh Kasus Rangkaian Seri Induktor

Berdasarkan gambar contoh rangkaian Seri Induktor diatas, diketahui bahwa nilai Induktor :
L1 = 100nH
L2 = 470nH
L3 = 30nH
Ltotal= ?
Penyelesaiannya
Ltotal = L1 + L2 + L3
Ltotal = 100nH + 470nH + 30nH
Ltotal = 600nH

Rangkaian Paralel Induktor

Rangkaian Paralel Induktor adalah sebuah rangkaian yang terdiri 2 atau lebih Induktor yang dirangkai secara berderet atau berbentuk Paralel.
Rangkaian Seri dan Paralel Induktor

Rumus Rangkaian Paralel Induktor

Rumus Rangkaian Paralel Induktor adalah sebagai berikut :
1/Ltotal = 1/L1 + 1/L2 + 1/L3 + ….. + 1/Ln
Dimana :
Ltotal = Total Nilai Induktor
L1 = Induktor ke-1
L2 = Induktor ke-2
L3 = Induktor ke-3
Ln = Induktor ke-n

Contoh Kasus Perhitungan Rangkaian Paralel

Berdasarkan gambar contoh rangkaian Paralel Induktor diatas, diketahui bahwa nilai Induktor :
L1 = 100nH
L2 = 300nH
L3 = 30nH
Ltotal= ?
Penyelesaiannya
1/Ltotal = 1/L1 + 1/L2 + 1/L3 
1/Ltotal = 1/100nH + 1/300nH + 1/30nH
1/Ltotal = 3/300 + 1/300 + 10/300
1/Ltotal = 14/300
1/Ltotal = 14 x L = 1 x 300 (hasil kali silang)
1/Ltotal = 300/14
1/Ltotal = 21,428nH

Macam Alat Ukur Elektronik dan Fungsinya

Macam Alat Ukur Elektronik dan Fungsinya


Alat Ukur Elektronika dan Fungsinya | Alat ukur elektronik (listrik) merupakan perkakas/alat yang digunakan untuk mengukur besaran-besaran listrik seperti hambatan listrik (R), kuat arus listrik (I), beda potensial listrik (V), daya listrik (P), dan lainnya. Terdapat dua jenis alat ukur yaitu alat ukur analog dan alat ukur digital.


Berikut adalah macam-macam alat ukur listrik :
  • Amper-meter
  • Voltmeter
  • Ohm-meter
  • Multimeter Analog/Digital
  • Oscilloscope
  • Generator fungsi
  • Digital Signal Analyzer
  • Spectrum meter
1 Ampermeter
Amperemeter adalah alat yang digunakan untuk mengukur kuat arus listrik baik untuk listrik DC maupun AC yang ada dalam rangkaian tertutup. Amperemeter biasanya dipasang berderet dengan elemen listrik. Cara menggunakannya adalah dengan menyisipkan amperemeter secara langsung ke rangkaian.

Ampermeter

Ampermeter

Ampermeter

Ampermeter posisi nol di tengah
2. Voltmeter
Voltmeter adalah alat/perkakas untuk mengukur besar tegangan listrik dalam suatu rangkaian listrik. Voltmeter disusun secara paralel terhadap letak komponen yang diukur dalam rangkaian. Alat ini terdiri dari tiga buah lempengan tembaga yang terpasang pada sebuah bakelite yang dirangkai dalam sebuah tabung kaca atau plastik. Lempengan luar berperan sebagai anode sedangkan yang di tengah sebagai katode. Umumnya tabung tersebut berukuran 15 x 10cm (tinggi x diameter).

Alat Ukur Elektronik dan Fungsinya
Voltmeter
3. Ohm-meter
Ohm-meter adalah alat untuk mengukur hambatan listrik, yaitu daya untuk menahan mengalirnya arus listrik dalam suatu konduktor. Besarnya satuan hambatan yang diukur oleh alat ini dinyatakan dalam ohm. Alat ohm-meter ini menggunakan galvanometer untuk mengukur besarnya arus listrik yang lewat pada suatu hambatan listrik (R), yang kemudian dikalibrasikan ke satuan ohm.

Macam Alat Ukur Elektronik dan Fungsinya
Ohm-meter
4. Multitester Analog/Digital 
Multimeter adalah alat untuk mngukur listrik yang sering dikenal sebagai VOAM (VolT, Ohm, Ampere meter) yang dapat mengukur tegangan (voltmeter), hambatan (ohm-meter), maupun arus (amper-meter). Ada dua kategori multimeter: multimeter digital atau DMM (digital multi-meter)(untuk yang baru dan lebih akurat hasil pengukurannya), dan multimeter analog. Masing-masing kategori dapat mengukur listrik AC, maupun listrik DC.
Macam Alat Ukur Elektronik dan Fungsinya
Multitester Digital
Macam Alat Ukur Elektronik dan Fungsinya
Multitester Analog
5. Oscilloscope 
Oscilloscope/osiloskop adalah alat ukur elektronika yang berfungsi memproyeksikan bentuk sinyal listrik agar dapat dilihat dan dipelajari. Osiloskop dilengkapi dengan tabung sinar katode. Peranti pemancar elektron memproyeksikan sorotan elektron ke layar tabung sinar katode. Sorotan elektron membekas pada layar. Suatu rangkaian khusus dalam osiloskop menyebabkan sorotan bergerak berulang-ulang dari kiri ke kanan. Pengulangan ini menyebabkan bentuk sinyal kontinyu sehingga dapat dipelajari.

Macam Alat Ukur Elektronik dan Fungsinya
osiloskop
6. Generator fungsi
Generator fungsi adalah alat ukur yang digunakan sebagai sumber pemicu yang diperlukan, merupakan bagian dari peralatan (software) uji coba elektronik yang digunakan untuk menciptakan gelombang listrik. Gelombang ini bisa berulang-ulang atau satu kali.

Macam Alat Ukur Elektronik dan Fungsinya
Generator fungsi
Generator fungsi analog umumnya menghasilkan gelombang segitiga sebagai dasar dari semua outputnya. Segitiga ini dihasilkan oleh kapasitor yang dimuat dan dilepas secara berulang-ulang dari sumber arus konstan.

Tipe lain dari generator fungsi adalah sub-sistem yang menyediakan output sebanding terhadap beberapa input. Contohnya, output berbentuk kesebandingan dengan akar kuadrat dari input. Alat seperti itu digunakan dalam sistem pengendali umpan dan komputer analog.

Pengertian Rectifier (Penyearah Gelombang) dan Jenis-Jenisnya



Penyearah Gelombang Penuh (Full Wave Rectifier)
Pengertian Rectifier (Penyearah Gelombang) dan Jenis-jenisnya – Rectifier atau dalam bahasa Indonesia disebut dengan Penyearah Gelombang adalah suatu bagian dari Rangkaian Catu Daya atau Power Supply yang berfungsi sebagai pengubah sinyal AC (Alternating Current) menjadi sinyal DC (Direct Current). Rangkaian Rectifier atau Penyearah Gelombang ini pada umumnya menggunakan Dioda sebagai Komponen Utamanya. Hal ini dikarenakan Dioda memiliki karakteristik yang hanya melewatkan arus listrik ke satu arah dan menghambat arus listrik dari arah sebaliknya. Jika sebuah Dioda dialiri arus Bolak-balik (AC), maka Dioda tersebut hanya akan melewatkan setengah gelombang, sedangkan setengah gelombangnya lagi diblokir. Untuk lebih jelas, silakan lihat gambar dibawah ini :
Pengertian Rectifier (Penyearah Gelombang)

Jenis-jenis Rectifier (Penyearah Gelombang)

Pada dasarnya, Rectifier atau Penyearah Gelombang dibagi menjadi dua jenis yaitu Half Wave Rectifier (Penyearah Setengah Gelombang) dan Full Wave Rectifier (Penyearah Gelombang Penuh).

Half Wave Rectifier (Penyearah Setengah Gelombang)

Half Wave Rectifier atau Penyearah Setengah Gelombang merupakan Penyearah yang paling sederhana karena hanya menggunakan 1 buah Dioda untuk menghambat sisi sinyal negatif dari gelombang AC dari Power supply dan melewatkan sisi sinyal Positif-nya.
Penyearah Setengah Gelombang (Half Wave Rectifier)
Pada prinsipnya, arus AC terdiri dari 2 sisi gelombang yakni sisi positif dan sisi negatif yang bolak-balik. Sisi Positif gelombang  dari arus AC yang masuk ke Dioda akan menyebabkan Dioda menjadi bias maju (Forward Bias) sehingga melewatkannya, sedangkan sisi Negatif gelombang arus AC yang masuk akan menjadikan Dioda dalam posisi Reverse Bias (Bias Terbalik) sehingga menghambat sinyal negatif tersebut.

Full Wave Rectifier (Penyearah Gelombang Penuh)

Terdapat 2 cara untuk membentuk Full Wave Rectifier atau Penyearah Gelombang Penuh. Kedua cara tersebut tetap menggunakan Dioda sebagai Penyearahnya namun dengan jumlah Dioda yang berbeda yaitu dengan menggunakan 2 Dioda dan 4 Dioda. Penyearah Gelombang Penuh dengan 2 Dioda harus menggunakan Transformer CT sedangkan Penyearah 4 Dioda tidak perlu menggunakan Transformer CT, Penyearah 4 Dioda sering disebut juga dengan Full Wave Bridge Rectifier.

Penyearah Gelombang Penuh 2 Dioda

Seperti yang dikatakan diatas, Penyearah Gelombong Penuh 2 Dioda memerlukan Transformer khusus yang dinamakan dengan Transformer CT (Centre Tapped). Transformer CT memberikan Output (Keluaran) Tegangan yang berbeda fasa 180° melalui kedua Terminal Output Sekundernya. Perbedaan Fase 180° tersebut dapat dilihat seperti pada gambar dibawah ini :
Penyearah Gelombang Penuh (Full Wave Rectifier) - 2 dioda
Di saat Output Transformer CT pada Terminal Pertama memberikan sinyal Positif pada D1, maka Terminal kedua pada Transformer CT akan memberikan sinyal Negatif (-) yang berbeda fasa 180° dengan Terminal Pertama. D1 yang mendapatkan sinyal Positif (+) akan berada dalam kondisi Forward Bias (Bias Maju) dan melewatkan sisi sinyal Positif (+) tersebut sedangkan D2 yang mendapatkan sinyal Negatif (-) akan berada dalam kondisi Reverse Bias (Bias Terbalik) sehingga menghambat sisi sinyal Negatifnya.
Sebaliknya, pada saat gelombang AC pada Terminal Pertama berubah menjadi sinyal Negatif maka D1 akan berada dalam kondisi Reverse Bias dan menghambatnya. Terminal Kedua yang berbeda fasa 180° akan berubah menjadi sinyal Positif sehingga D2 berubah menjadi kondisi Forward Bias yang melewatkan sisi sinyal Positif tersebut.

Penyearah Gelombang Penuh 4 Dioda (Bridge Rectifier)

Penyearah Gelombang Penuh dengan menggunakan 4 Dioda adalah jenis Rectifier yang paling sering digunakan dalam rangkaian Power Supply karena memberikan kinerja yang lebih baik dari jenis Penyearah lainnya. Penyearah Gelombang Penuh 4 Dioda ini juga sering disebut dengan Bridge Rectifier atau Penyearah Jembatan.
Penyearah Gelombang Penuh (Full Wave Rectifier)
Berdasarkan gambar diatas, jika Transformer mengeluarkan output sisi sinyal Positif (+) maka Output  maka D1 dan D2 akan berada dalam kondisi Forward Bias sehingga melewatkan sinyal Positif tersebut sedangakan D3 dan D4 akan menghambat sinyal sisi Negatifnya. Kemudian pada saat Output Transformer berubah menjadi sisi sinyal Negatif (-) maka D3 dan D4 akan berada dalam kondisi Forward Bias sehingga melewatkan sinyal sisi Positif (+) tersebut sedangkan D1 dan D2 akan menghambat sinyal Negatifnya.

 Penyearah Gelombang yang dilengkapi dengan Kapasitor

Tegangan yang dihasilkan oleh Rectifier belum benar-benar Rata seperti tegangan DC pada umumnya, oleh karena itu diperlukan Kapasitor yang berfungsi sebagai Filter (Penyaring) untuk menekan riple yang terjadi pada proses penyearahan Gelombang AC. Kapasitor yang umum dipakai adalah Kapasitor jenis ELCO (Electrolyte Capacitor).

Pengertian Rectifier (Penyearah Gelombang) dan Jenis-Jenisnya


Cara Menghitung Nilai Resistor


Cara Menghitung Nilai ResistorCara Membaca Nilai Resistor – Resistor merupakan komponen penting dan sering dijumpai dalam sirkuit Elektronik. Boleh dikatakan hampir setiap sirkuit Elektronik pasti ada Resistor. Tetapi banyak diantara kita yang bekerja di perusahaan perakitan Elektronik maupun yang menggunakan peralatan Elektronik tersebut tidak mengetahui cara membaca kode warna ataupun kode angka yang ada ditubuh Resistor itu sendiri.
Berdasarkan bentuknya dan proses pemasangannya pada PCB, Resistor terdiri 2 bentuk yaitu bentuk Komponen Axial/Radial dan Komponen Chip. Untuk bentuk Komponen Axial/Radial, nilai resistor diwakili oleh kode warna sehingga kita harus mengetahui cara membaca dan mengetahui nilai-nilai yang terkandung dalam warna tersebut sedangkan untuk komponen chip, nilainya diwakili oleh Kode tertentu sehingga lebih mudah dalam membacanya.
Kita juga bisa mengetahui nilai suatu Resistor dengan cara menggunakan alat pengukur Ohm Meter atau MultiMeter. Satuan nilai Resistor adalah Ohm (Ω).

Cara menghitung nilai Resistor berdasarkan Kode Warna

Seperti yang dikatakan sebelumnya, nilai Resistor yang berbentuk Axial adalah diwakili oleh Warna-warna yang terdapat di tubuh (body) Resistor itu sendiri dalam bentuk Gelang. Umumnya terdapat 4 Gelang di tubuh Resistor, tetapi ada juga yang 5 Gelang.
Gelang warna Emas dan Perak biasanya terletak agak jauh dari gelang warna lainnya sebagai tanda gelang terakhir. Gelang Terakhirnya ini juga merupakan nilai toleransi pada nilai Resistor yang bersangkutan.
Tabel dibawah ini adalah warna-warna yang terdapat di Tubuh Resistor :
Tabel Kode Warna Resistor

Perhitungan untuk Resistor dengan 4 Gelang warna :

Cara menghitung nilai resistor 4 gelang
Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan Jumlah nol dari kode warna Gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut
Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan105
Gelang ke 4 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.

Perhitungan untuk Resistor dengan 5 Gelang warna :

Cara Menghitung Nilai Resistor 5 Gelang Warna
Masukkan angka langsung dari kode warna Gelang ke-1 (pertama)
Masukkan angka langsung dari kode warna Gelang ke-2
Masukkan angka langsung dari kode warna Gelang k3-3
Masukkan Jumlah nol dari kode warna Gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10n)
Merupakan Toleransi dari nilai Resistor tersebut
Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau = 5
Gelang ke 4 : Hijau = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 5 : Perak = Toleransi 10%
Maka nilai Resistor tersebut adalah 105 * 105 = 10.500.000 Ohm atau 10,5 MOhm dengan toleransi 10%.

Contoh-contoh perhitungan lainnya :
Merah, Merah, Merah, Emas → 22 *102 = 2.200 Ohm atau 2,2 Kilo Ohm dengan 5% toleransi
Kuning, Ungu, Orange, Perak → 47 * 103 = 47.000 Ohm atau 47 Kilo Ohm dengan 10% toleransi
Cara menghitung Toleransi :
2.200 Ohm dengan Toleransi 5% =
2200 – 5% = 2.090
2200 + 5% = 2.310
ini artinya nilai Resistor tersebut akan berkisar antara 2.090 Ohm ~ 2.310 Ohm
Untuk mempermudah menghafalkan warna di Resistor, kami memakai singkatan seperti berikut :
HI CO ME O KU JAU BI UNG A PU
(HItam, COklat, MErah, Orange, KUning. HiJAU, BIru, UNGu, Abu-abu, PUtih)

Cara menghitung nilai Resistor berdasarkan Kode Angka :

Membaca nilai Resistor yang berbentuk komponen Chip lebih mudah dari Komponen Axial, karena tidak menggunakan kode warna sebagai pengganti nilainya. Kode yang digunakan oleh Resistor yang berbentuk Komponen Chip menggunakan Kode Angka langsung jadi sangat mudah dibaca atau disebut dengan Body Code Resistor (Kode Tubuh Resistor)
Resistor Chip
Contoh :
Kode Angka yang tertulis di badan Komponen Chip Resistor adalah 4 7 3;
Cara pembacaannya adalah :
Masukkan Angka ke-1 langsung = 4
Masukkan Angka ke-2 langsung = 7
Masukkan Jumlah nol dari Angka ke 3 = 000 (3 nol) atau kalikan dengan 103
Maka nilainya adalah 47.000 Ohm atau 47 kilo Ohm (47 kOhm)

Contoh-contoh perhitungan lainnya :
222 → 22 * 102 = 2.200 Ohm atau 2,2 Kilo Ohm
103 → 10 * 103 = 10.000 Ohm atau 10 Kilo Ohm
334 → 33 * 104 = 330.000 Ohm atau 330 Kilo Ohm

Ada juga yang memakai kode angka seperti dibawah ini :
(Tulisan R menandakan letaknya koma decimal)
4R7 = 4,7 Ohm
0R22 = 0,22 Ohm
Keterangan :
Ohm = Ω
Kilo Ohm = KΩ
Mega Ohm = MΩ
1.000 Ohm = 1 kilo Ohm (1 KΩ )
1.000.000 Ohm = 1 Mega Ohm (1 MΩ)
1.000 kilo Ohm = 1 Mega Ohm (1 MΩ)
luvne.com ayeey.com cicicookies.com mbepp.com kumpulanrumusnya.com.com tipscantiknya.com